
HOMOMORPHIC ENCRYPTION FOR PALISADE USERS

WEB & JAVASCRIPT APPLICATIONS
June 11, 2021



2

AGENDA

• Introducing the JavaScript/WebAssembly port
• Browser example (simple integers)
• Performance Review
• Javascript (Node.js)/WebAssembly examples

• Threshold FHE
• Proxy Re-Encryption
• Buffer-based serialization

• Considerations and Future Work



3

JavaScript/WebAssembly 
Port
Performing homomorphic operations in Browser or NodeJS 



4

Introducing the Javascript / WebAssembly port

● https://gitlab.com/palisade/palisade-wasm

● We are developing an npm package that provides access to the Palisade homomorphic encryption 
library to JavaScript / Typescript users
○ Currently in alpha, API is currently subject to change

● Currently optimized for the following schemes
○ BGVrns
○ CKKS
○ FHEW

● WebAssembly environment is typically limited to 4GB RAM

https://gitlab.com/palisade/palisade-wasm


5

Using the JavaScript/WebAssembly Port



6

Supported Examples

● BINFHE
○ Boolean circuits
○ Boolean circuits with buffer-based serialization

● PKE
○ PRE buffer
○ Simple Integer
○ Simple Integer with BGVrns scheme
○ Simple Integer with buffer-based serialization
○ Simple Real Numbers
○ Threshold FHE

All examples demonstrated in previous 
Palisade webinars are supported by the 
WebAssembly Port



7

Naming / Documentation

● While the JS API docs are still a work in progress, the names in the JS port closely follow the 
underlying C++ functions (with some slight alterations)

C++ JS

CryptoContext<DCRTPoly> CryptoContextDCRTPoly

EvalMult(Ciphertext,Ciphertext) EvalMultCipherCipher

AND BINGATE.AND



8

Capabilities

● All examples described in previous Palisade 
webinars can be re-created in JavaScript by 
using the WebAssembly port

● WebAssembly users can perform 
homomorphic encryptions over
○ Boolean circuits
○ Integers
○ Real Numbers

● Encryption keys can be serialized and 
deserialized to communicate over the network 
with peers
○ Since file access from WebAssembly is 

somewhat complex, only buffer 
serialization is currently supported



9

Examples: Web Demo Simple Integers

http://drive.google.com/file/d/1GxukHuvWwkn0ZO1vx7cf-YNlpqLqWOeq/view


10

Typescript bindings

● The JavaScript port will also 
feature typescript bindings, 
which can catch errors at 
compile time rather than 
runtime
○ Also provides accurate 

autocomplete!

● This provides many of the 
structural guarantees of C++ 
while maintaining the flexibility 
of JavaScript’s OO and functional 
patterns



11

Documentation

● Doxygen for C/C++ to WASM:

● TypeDoc/TSDoc for WASM => Typescript (Coming soon):



12

Performance Review



13

Performance

bin/benchmark/lib-benchmark

Run on (8 X 4700 MHz CPU s)
CPU Caches:
L1 Data: 32 KiB (x8)
L1 Instruction: 32 KiB (x8)
L2 Unified: 256 KiB (x8)
L3 Unified: 12288 KiB (x1)

Load Average: 0.09, 0.39, 0.96

bin/lib-benchmark.js

● GCC

● NodeJS WASM

● Clang



14

Performance
WebAssembly Performance Comparison per Scheme



15

Performance
WebAssembly Performance Comparison per Scheme



16

Performance
WebAssembly Performance Comparison per Scheme



17

Performance
WebAssembly Performance Comparison per Scheme



18

Performance
WebAssembly Performance Comparison per Scheme



19

Performance

● For integer calculations, BGVrns is 
the preferred scheme

● For real number calculations, use 
CKKS

● BGVrns and CKKS are optimized for 
WebAssembly

● Multiplying/rotation of ciphertexts 
suffers approximately a 5X
slowdown with BGVrns, but 
receives a 20X slowdown with 
BFVrns

WebAssembly Performance Comparison  per Scheme



20

NodeJS Examples



21

Examples: Lives Demos

• Threshold FHE 

• Proxy Re-Encryption

• Buffer-based serialization



22

Considerations and Future 
Work



23

Considerations of JavaScript/WebAssembly Port

● Benefits
○ Develop web-based homomorphic encryption applications with comparable performance when 

compared to native execution.

● Limitations
○ Currently generation of crypto context supports a limited number of parameters. This is 

work in progress.
○ Whereas C++ detects variables going out of scope, JavaScript users must explicitly call 

.delete() on every C++ handle they receive i.e. generated crypto context
○ OpenMP is not available for WebAssembly yet.
○ Very limited SIMD support mostly through emulation.

Only the 128-bit wide instructions from AVX instruction set are available. 256-bit wide AVX 
instructions are not provided.

● Alternatives
○ Other binding options are available where users can write their own WASM bindings
○ C++ addons can also be used.



24

Future Work

● Optimize other schemes for WebAssembly

● Potential support for multi-threading by WebAssembly

● Examples to highlight potential use cases of the palisade-wasm
○ Develop web-based homomorphic solution
○ Networked Threshold-FHE, Proxy-ReEncryption

● We’d love more contributors. Please try Palisade-wasm and help us 
improve it.

● Please Help us spread the word!



25

THANK YOU!

https://palisade-crypto.org

https://palisade-crypto.org/

	HOMOMORPHIC ENCRYPTION FOR PALISADE USERS
	AGENDA
	JavaScript/WebAssembly Port
	Introducing the Javascript / WebAssembly port
	Using the JavaScript/WebAssembly Port
	Supported Examples
	Naming / Documentation
	Capabilities
	Examples: Web Demo
	Typescript bindings
	Documentation
	Performance Review
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	Performance
	NodeJS Examples
	Examples: Lives Demos
	Considerations and Future Work
	Considerations of JavaScript/WebAssembly Port
	Future Work
	THANK YOU!

