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AGENDA

• Introducing the JavaScript/WebAssembly port
• Browser example (simple integers)
• Performance Review
• Javascript (Node.js)/WebAssembly examples

• Threshold FHE
• Proxy Re-Encryption
• Buffer-based serialization

• Considerations and Future Work
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JavaScript/WebAssembly 
Port
Performing homomorphic operations in Browser or NodeJS 
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Introducing the Javascript / WebAssembly port

● https://gitlab.com/palisade/palisade-wasm

● We are developing an npm package that provides access to the Palisade homomorphic encryption 
library to JavaScript / Typescript users
○ Currently in alpha, API is currently subject to change

● Currently optimized for the following schemes
○ BGVrns
○ CKKS
○ FHEW

● WebAssembly environment is typically limited to 4GB RAM

https://gitlab.com/palisade/palisade-wasm
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Using the JavaScript/WebAssembly Port
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Supported Examples

● BINFHE
○ Boolean circuits
○ Boolean circuits with buffer-based serialization

● PKE
○ PRE buffer
○ Simple Integer
○ Simple Integer with BGVrns scheme
○ Simple Integer with buffer-based serialization
○ Simple Real Numbers
○ Threshold FHE

All examples demonstrated in previous 
Palisade webinars are supported by the 
WebAssembly Port
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Naming / Documentation

● While the JS API docs are still a work in progress, the names in the JS port closely follow the 
underlying C++ functions (with some slight alterations)

C++ JS

CryptoContext<DCRTPoly> CryptoContextDCRTPoly

EvalMult(Ciphertext,Ciphertext) EvalMultCipherCipher

AND BINGATE.AND
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Capabilities

● All examples described in previous Palisade 
webinars can be re-created in JavaScript by 
using the WebAssembly port

● WebAssembly users can perform 
homomorphic encryptions over
○ Boolean circuits
○ Integers
○ Real Numbers

● Encryption keys can be serialized and 
deserialized to communicate over the network 
with peers
○ Since file access from WebAssembly is 

somewhat complex, only buffer 
serialization is currently supported
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Examples: Web Demo Simple Integers

http://drive.google.com/file/d/1GxukHuvWwkn0ZO1vx7cf-YNlpqLqWOeq/view
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Typescript bindings

● The JavaScript port will also 
feature typescript bindings, 
which can catch errors at 
compile time rather than 
runtime
○ Also provides accurate 

autocomplete!

● This provides many of the 
structural guarantees of C++ 
while maintaining the flexibility 
of JavaScript’s OO and functional 
patterns
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Documentation

● Doxygen for C/C++ to WASM:

● TypeDoc/TSDoc for WASM => Typescript (Coming soon):
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Performance Review
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Performance

bin/benchmark/lib-benchmark

Run on (8 X 4700 MHz CPU s)
CPU Caches:
L1 Data: 32 KiB (x8)
L1 Instruction: 32 KiB (x8)
L2 Unified: 256 KiB (x8)
L3 Unified: 12288 KiB (x1)

Load Average: 0.09, 0.39, 0.96

bin/lib-benchmark.js

● GCC

● NodeJS WASM

● Clang
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Performance
WebAssembly Performance Comparison per Scheme
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Performance
WebAssembly Performance Comparison per Scheme
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Performance
WebAssembly Performance Comparison per Scheme
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Performance
WebAssembly Performance Comparison per Scheme
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Performance
WebAssembly Performance Comparison per Scheme
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Performance

● For integer calculations, BGVrns is 
the preferred scheme

● For real number calculations, use 
CKKS

● BGVrns and CKKS are optimized for 
WebAssembly

● Multiplying/rotation of ciphertexts 
suffers approximately a 5X
slowdown with BGVrns, but 
receives a 20X slowdown with 
BFVrns

WebAssembly Performance Comparison  per Scheme
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NodeJS Examples
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Examples: Lives Demos

• Threshold FHE 

• Proxy Re-Encryption

• Buffer-based serialization
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Considerations and Future 
Work
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Considerations of JavaScript/WebAssembly Port

● Benefits
○ Develop web-based homomorphic encryption applications with comparable performance when 

compared to native execution.

● Limitations
○ Currently generation of crypto context supports a limited number of parameters. This is 

work in progress.
○ Whereas C++ detects variables going out of scope, JavaScript users must explicitly call 

.delete() on every C++ handle they receive i.e. generated crypto context
○ OpenMP is not available for WebAssembly yet.
○ Very limited SIMD support mostly through emulation.

Only the 128-bit wide instructions from AVX instruction set are available. 256-bit wide AVX 
instructions are not provided.

● Alternatives
○ Other binding options are available where users can write their own WASM bindings
○ C++ addons can also be used.
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Future Work

● Optimize other schemes for WebAssembly

● Potential support for multi-threading by WebAssembly

● Examples to highlight potential use cases of the palisade-wasm
○ Develop web-based homomorphic solution
○ Networked Threshold-FHE, Proxy-ReEncryption

● We’d love more contributors. Please try Palisade-wasm and help us 
improve it.

● Please Help us spread the word!
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THANK YOU!

https://palisade-crypto.org

https://palisade-crypto.org/
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