
Secure large-scale genome-wide association studies using homomorphic encryption

Alexander Gusev

Dana-Farber Cancer Institute Harvard Medical School

GWAS: Genome-Wide Association Studies

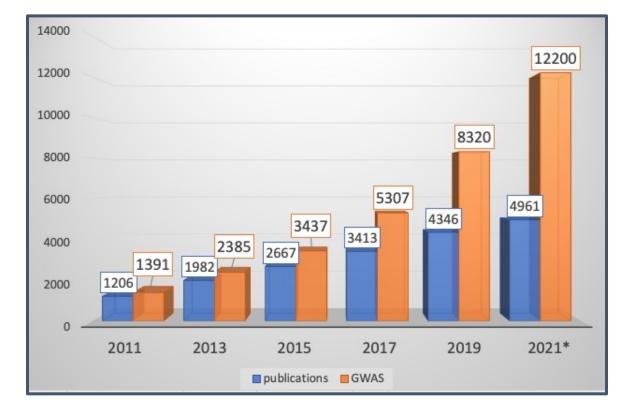
Goal:

Identify genetic mutations causal for disease

Input:

Disease case/control patients and cofactors ~1M genotyped common polymorphisms

Model:


Test each polymorphism against disease status

Output:

Variant-disease association

GWAS associations for complex traits

- Thousands of reported associations
- Consistent replication across cohorts
- Together explaining a large fraction of heritable disease
- Genetic discovery is now mostly a matter of sample size

GWAS associations explain clinical outcomes

genetics

A coding variant in *RARG* confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer

Folefac Aminkeng^{1,2,13}, Amit P Bhavsar^{2,3,13}, Henk Visscher^{1,4}, Shahrad R Rassekh^{2,5}, Yuling Li^{2,3}, Jong W Lee^{1,2}, Liam R Brunham⁶, Huib N Caron⁷, Elvira C van Dalen⁷, Leontien C Kremer⁷, Helena J van der Pal^{7,8}, Ursula Amstutz^{2,3,12}, Michael J Rieder⁹, Daniel Bernstein¹⁰, Bruce C Carleton^{2,3,11,14}, Michael R Hayden^{1,2,6,14}, Colin J D Ross^{1-3,11,14} & The Canadian Pharmacogenomics Network for Drug Safety Consortium¹⁵

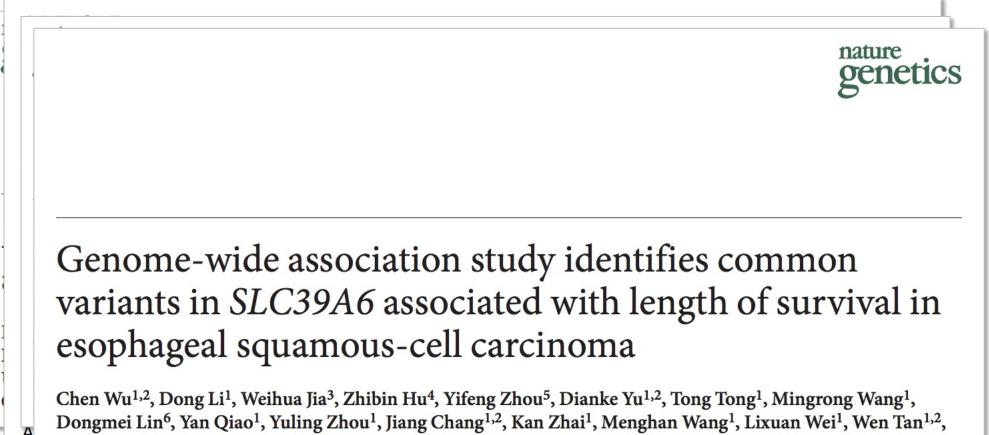
ARTICLE

Received 24 Jun 2014 | Accepted 10 Mar 2015 | Published 5 May 2015

DOI: 10.1038/ncomms7889

Two susceptibility loci identified for prostate cancer aggressiveness

Sonja I. Berndt^{1,*}, Zhaoming Wang^{1,2,*}, Meredith Yeager^{1,2}, Michael C. Alavanja¹, Demetrius Albanes¹, Laufey Amundadottir¹, Gerald Andriole³, Laura Beane Freeman¹, Daniele Campa⁴, Geraldine Cancel-Tassin⁵, Federico Canzian⁶, Jean-Nicolas Cornu¹, Olivier Cussenot⁵, W. Ryan Diver⁷, Susan M. Gapstur⁷, Henrik Grönberg⁸, Christopher A. Haiman⁹, Brian Henderson⁹, Amy Hutchinson², David J. Hunter¹⁰, Timothy J. Key¹¹, Suzanne Kolb¹², Stella Koutros¹, Peter Kraft¹⁰, Loic Le Marchand¹³, Sara Lindström¹⁰, Mitchell J. Machiela¹, Elaine A. Ostrander¹⁴, Elio Riboli¹⁵, Fred Schumacher⁹, Afshan Siddiq¹⁶, Janet L. Stanford^{12,17}, Victoria L. Stevens⁷, Ruth C. Travis¹¹, Konstantinos K. Tsilidis¹⁸, Jarmo Virtamo¹⁹, Stephanie Weinstein¹, Fredrik Wilkund⁸, Jianfeng Xu²⁰, S. Lilly Zheng²⁰, Kai Yu¹, William Wheeler²¹, Han Zhang¹, African Ancestry Prostate Cancer GWAS Consortium[†], Joshua Sampson¹, Amanda Black¹, Kevin Jacobs¹, Robert N. Hoover¹, Margaret Tucker¹ & Stephen J. Chanock¹


A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1

Laura Fachal^{1,2}, Antonio Gómez-Caamaño³, Gillian C Barnett⁴, Paula Peleteiro³, Ana M Carballo³, Patricia Calvo-Crespo³, Sarah L Kerns⁵, Manuel Sánchez-García⁶, Ramón Lobato-Busto⁶, Leila Dorling⁴, Rebecca M Elliott⁷, David P Dearnaley⁸, Matthew R Sydes⁹, Emma Hall¹⁰, Neil G Burnet¹¹, Ángel Carracedo^{1,2,12}, Barry S Rosenstein⁵, Catharine M L West⁷, Alison M Dunning⁴ & Ana Vega^{1,2} African Ancestry Prostate Cancer GWAS Consortium[†], Joshua Sampson⁺, Amanda Black⁺, Kevin Jacobs⁺,

Robert N. Hoover¹, Margaret Tucker¹ & Stephen J. Chanock¹

nature

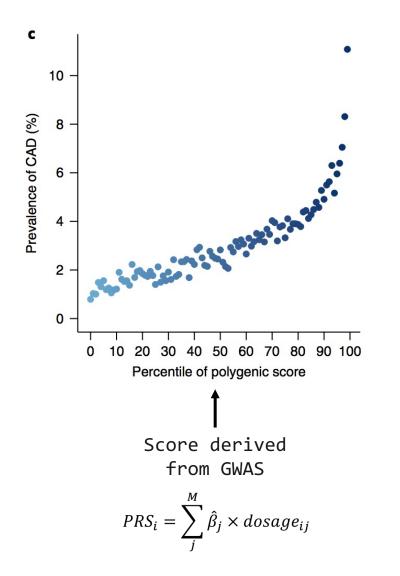
genetics

Hongbing Shen⁴, Yixin Zeng³ & Dongxin Lin^{1,2}

GWAS associations inform drug targets

GWAS associations support drug targets

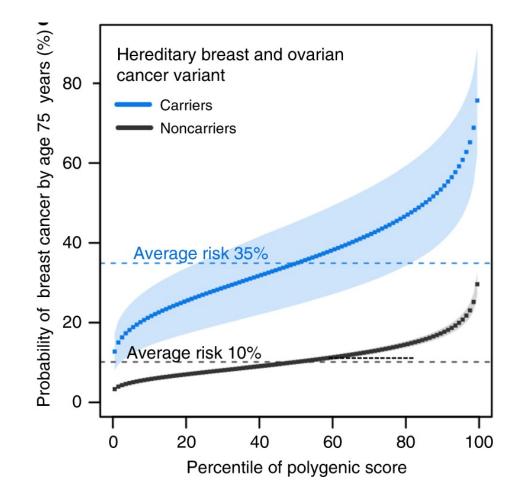
RESEARCH ARTICLE


Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval

"we find the use of human genetic evidence increases approval from Phase I by <u>greater than two-fold</u>, and, for Mendelian associations, the positive association <u>holds prospectively</u>"

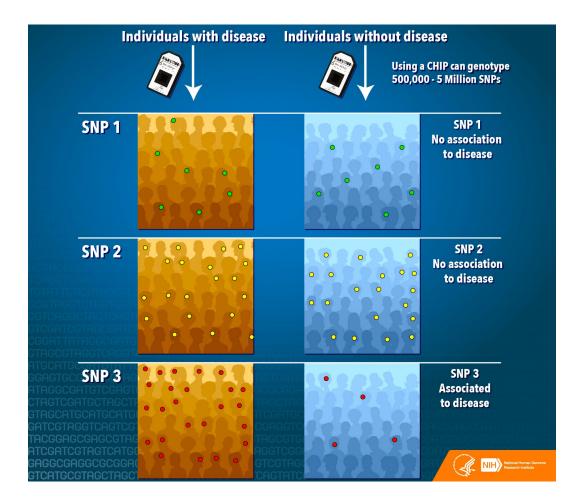
Emily A. King *, J. Wade Davis, Jacob F. Degner

GWAS results can predict genetic risk


Polygenic Risk Prediction (PRS) from GWAS

"For coronary artery disease, [high PRS] prevalence is 20fold higher than the carrier frequency of rare monogenic mutations conferring comparable risk. We propose that it is time to contemplate the inclusion of polygenic risk prediction in clinical care, and discuss relevant issues."

Khera et al. 2018 Nat Genet

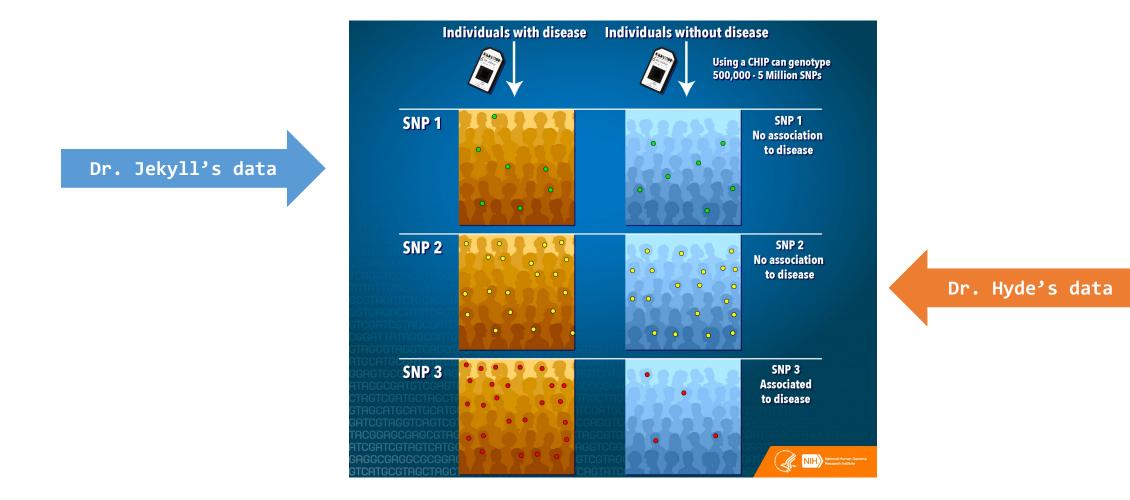

Polygenic score modifies monogenic risk

Fahed et al. 2020 Nat Comms

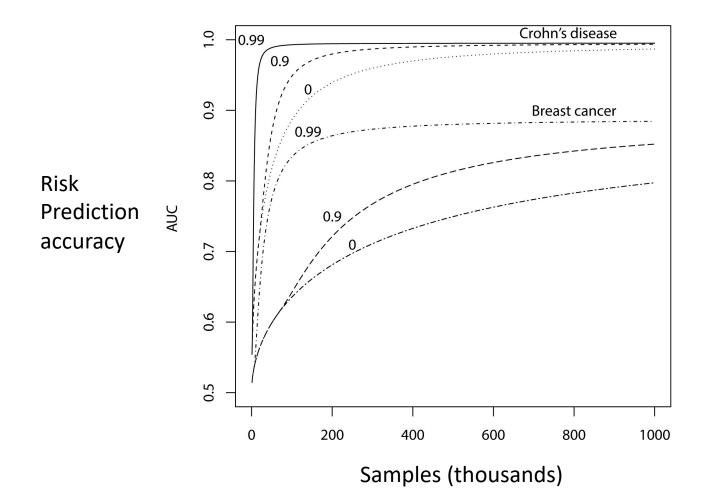
Barriers for GWAS

Barriers: Individual-level privacy

Barriers: Individual-level privacy


Identifying Personal Genomes by Surname Inference

Melissa Gymrek,^{1,2,3,4} Amy L. McGuire,⁵ David Golan,⁶ Eran Halperin,^{7,8,9} Yaniv Erlich¹*


Sharing sequencing data sets without identifiers has become a common practice in genomics. Here, we report that surnames can be recovered from personal genomes by profiling short tandem repeats on the Y chromosome (Y-STRs) and querying recreational genetic genealogy databases. We show that a combination of a surname with other types of metadata, such as age and state, can be used to triangulate the identity of the target. A key feature of this technique is that it entirely relies on free, publicly accessible Internet resources. We quantitatively analyze the probability of identification for U.S. males. We further demonstrate the feasibility of this technique by tracing back with high probability the identities of multiple participants in public sequencing projects.

Barriers: Sensitive data sharing

Barriers: Scalability

Dudbridge 2013 PLoS Genet

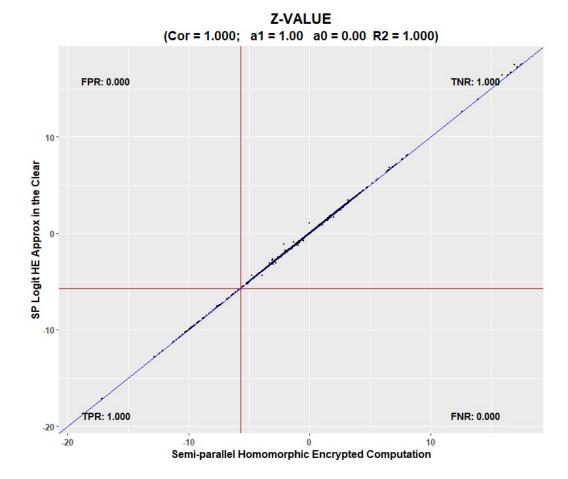
Solution: Secure, Encrypted GWAS

Previous work: secure multi-party GWAS

Encrypted computing approach: secure multi-party computation^[1]

- Statistical test: Cochran Armitage trend test
- Benchmark GWAS: 26k samples x 260k SNPs

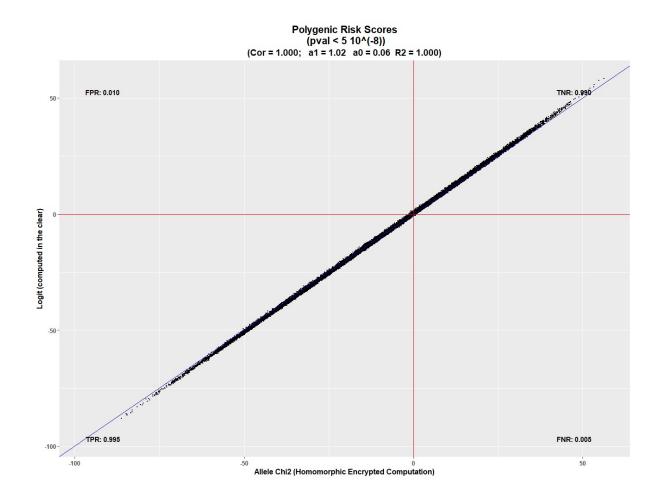
Results:

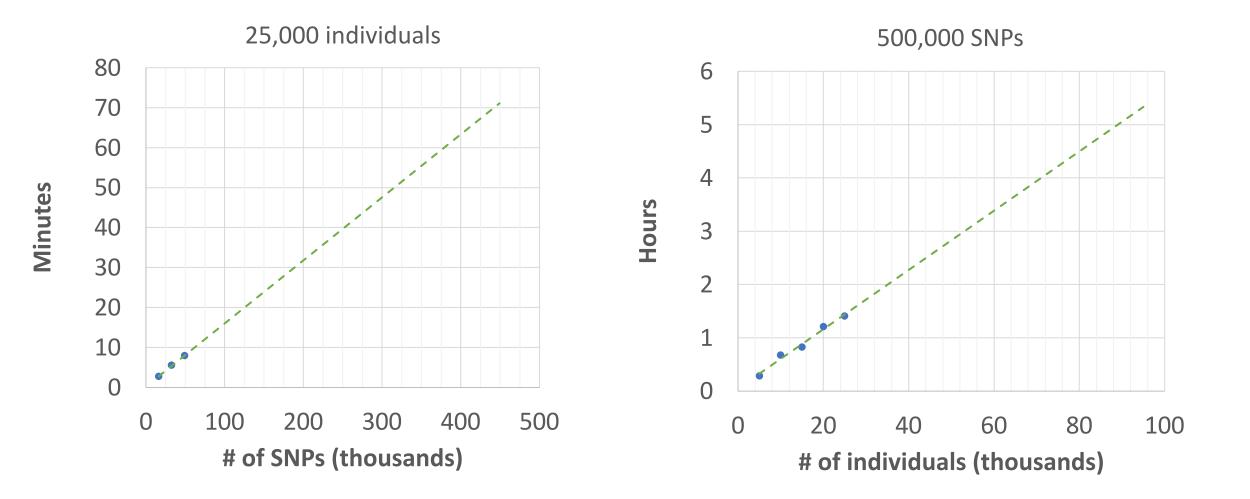

- Runtime on 100k samples x 500k SNPs: **193 hours**
- Requires live, interactive communication
- Logistic regression "does not yield a practical runtime"
- Expect that HE would be 5,000-10,000x slower and infeasible^[2]

[1] Cho et al. 2018 Nat Biotechnol; [2] Jagadeesh et al. 2017 Science

Results

	Prior MPC work	Our HE work		
Algorithm	Multi-party computation	Homomorphic encryption		
Statistical test	Cochran Armitage Trend (CAT)	Allelic χ^2 (CAT equivalent) Logistic regression		
Dataset	26k samples x 260k SNPs + extrapolation			
Accuracy of test	Nearly perfect			
Runtime on 100k samples x 500k SNPs	193 hours Practically impossible	5.6 hours 234 hours (log reg)		


No loss in accuracy overall


No loss in accuracy for top hits

SNP	Clear OR	Encrypted OR	Clear Chi^2	Encrypted Chi^2
rs2230199_C	1.40	1.40	263.13	263.13
rs114203272_T	0.64	0.64	61.11	61.11
rs10033900_T	1.13	1.13	51.64	51.64
rs943080_C	0.89	0.89	41.76	41.76
rs2043085_T	0.89	0.89	41.40	41.40
rs8135665_T	1.13	1.13	33.96	33.96
rs79037040_G	0.92	0.92	25.35	25.35
rs114212178_T	0.82	0.82	6.72	6.72

No loss in accuracy for genomic prediction

Scalable beyond 100,000 individuals

Proceedings of the National Academy of Sciences of the United States of America

Secure large-scale genome-wide association studies using homomorphic encryption

Marcelo Blatt^{a,1}, Alexander Gusev^{a,b,1}, Yuriy Polyakov^{a,1,2}, and Shafi Goldwasser^{a,c,1,2}

^aDuality Technologies, Inc., Newark, NJ 07103; ^bDana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215; and ^cSimons Institute for the Theory of Computing, University of California, Berkeley, CA 94720

Secure-GWAS: Opportunities

GWAS identifies **causal mutations**, drug targets, and risk/outcome predictors ... but effective GWAS is not possible without data sharing

Secure-GWAS for researchers:

- GWAS across institutions without data sharing
- Secure collaboration on sensitive phenotypes

Secure-GWAS for individuals:

• Participate in studies on-demand without sacrificing privacy