HOMOMORPHIC ENCRYPTION FOR PALISADE USERS:
TUTORIAL WITH APPLICATIONS
October 2, 2020

Yuriy Polyakov
David Bruce Cousins
contact@palisade-crypto.org
HOMOMORPHIC ENCRYPTION FOR PALISADE USERS

• Tutorial with applications consisting of 3 episodes (6 lectures)
• Episode 1
 • Introduction to Homomorphic Encryption
 • Boolean Arithmetic with Applications
• Episode 2
 • Integer Arithmetic
 • Applications of Homomorphic Encryption over Integers
• Episode 3
 • Approximate Number Arithmetic
 • Applications of Homomorphic Encryption over Approximate Numbers
HOMOMORPHIC ENCRYPTION FOR PALISADE USERS: TUTORIAL WITH APPLICATIONS

Integer Arithmetic

Yuriy Polyakov
ypolyakov@dualitytech.com
PREREQUISITES FOR THIS TALK

• Webinar #2A: Introduction to Homomorphic Encryption (https://www.youtube.com/watch?v=rMDoZdH53ZM)

• Other related webinars can be accessed at https://palisade-crypto.org/webinars/
AGENDA

• Basics
 • What arithmetic operations are supported?
 • What data structures are used?
 • Complete list of primitive operations

• Data encoding techniques

• Parameter selection
 • Plaintext modulus
 • Ciphertext modulus / Multiplicative depth
 • Ciphertext dimension / Security level

• Which scheme to choose?

• Code example

• More advanced topics
 • Higher-level operations
 • Further encoding-related topics
Basics

Explains supported operations and data structures
WHAT ARITHMETIC OPERATIONS ARE SUPPORTED?

• Exact integer arithmetic
 • Encrypt small integers and perform **addition** and **multiplication**, as long as the result does not exceed some fixed bound, for instance, if the bound is 10000
 • 123 + 456 \rightarrow 579
 • 12 * 432 \rightarrow 5184
 • 35 * 537 \rightarrow overflow
 • Most common scenario
 • In PALISADE, the maximum supported bound is 2^{32} (by design), i.e., the support is limited to 32-bit integers

• Modular integer arithmetic (finite fields)
 • Encrypt 8-bit unsigned integers (between 0 and 255) and perform **addition** and **multiplication** modulo 256
 • 128 + 128 \rightarrow 0
 • 2 * 129 \rightarrow 2
 • Used only for special use cases
WHAT DATA STRUCTURES ARE USED?

• The main data structure is a vector (array) of bounded integers
 • Many integers (typically between 2K and 64K) are “packed” in one vector (ciphertext)
 • Let us denote the vector size as \(n \) (a power of two)
 • Addition and multiplication of \(n \) integers can be done using a single addition/multiplication
 • Similar to Single Instruction Multiple Data (SIMD) instruction sets available on many modern processors
 • The SIMD capability should be used as much as possible to achieve best efficiency
 • **Rotation** operation is added to allow accessing the value at a specific index of the array
 • Addition, multiplication, and rotation are three primitive operations in integer HE

• More advanced structures are supported but they are used less frequently and typically require more advanced math knowledge, including
 • Matrices of bounded integers
 • Polynomials with bounded coefficients
 • High-precision integers (one per ciphertext)
COMPLETE LIST OF PRIMITIVE OPERATIONS

- Two-argument operations (the plaintext can represent a vector or a scalar)
 - Ciphertext-Ciphertext addition: EvalAdd
 - Ciphertext-Plaintext addition: EvalAdd
 - Ciphertext-Ciphertext multiplication: EvalMult
 - Ciphertext-Plaintext multiplication: EvalMult
 - Ciphertext-Ciphertext subtraction: EvalSub
 - Ciphertext-Plaintext subtraction: EvalSub

- Unary operations
 - Negation: EvalNegate
 - Vector rotation: EvalAtIndex

- The result of all these operations is a ciphertext, i.e., an encrypted vector
 - The benefit of this in practice is that mixed model-data modes can be supported, e.g.,
 - Encrypted model, data in the clear
 - Model in the clear, encrypted data
Data encoding techniques

Introduces main data encoding techniques used in integer HE
MAIN DATA ENCODING TECHNIQUE

• Standard packing: **PackedEncoding**
 • Packs bounded integers into a vector of size n
 • Supports component-wise addition (**EvalAdd**) and multiplication (**EvalMult**)

```plaintext
[ 3 ]   [ 6 ]   [ 9 ]   [ 3 ]   [ 6 ]   [ 18 ]
```

• Adds a new rotation operation (**EvalAtIndex**)
 • Right shift: positive index
 • Left shift: negative index
 • Rotations work cyclically over two equal “subvectors” of size $n/2$

• Used almost always
OTHER (RARELY USED) DATA ENCODING TECHNIQUES

• Coefficient packing: CoefPackedEncoding
 • Packs bounded integers into a vector of size n
 • Supports only component-wise addition (EvalAdd) but not multiplication
 • Scalar multiplication and limited rotation capability are also supported
 • Typically works well when no multiplications are needed

• Integer encoding: IntegerEncoding
 • Packs one integer into one ciphertext
 • Supports high-precision arithmetic but is not does not utilize packing (much slower)
Parameter selection

Explains main parameters and provides recommendations for their selection
MAIN PARAMETERS

• Plaintext modulus p
 • The bound for integer arithmetic
 • The modulus for modular arithmetic

• Ciphertext modulus q
 • Functional parameter that determines how many computations are allowed (how much noise can be tolerated)
 • Often set implicitly using the value of multiplicative depth specified by the user

• Ciphertext dimension n
 • Minimum value is computed based on the desired security level and ciphertext modulus q
 • It is also the size of the vector of encrypted integers when standard or coefficient packing is used
GUIDELINES FOR SETTING PLAINTEXT MODULUS

• In the case of exact integer arithmetic, the plaintext modulus p should be large enough to avoid an overflow
 • As we do not know the encrypted value, p should be estimated using the worst-case assumption
 • If we have two inputs a in $[0, 18]$ and b in $[0, 257]$ and we need to compute $a*b$, the value of p should be at least $18*257+1 = 4627$

• If we use standard packing (PackedEncoding), we have to compute a special prime that is compatible with this encoding method
 • auto plaintextModulus = FirstPrime<NativeInteger>(bits, 2*n);
 • $bits$ – the plaintext modulus should be at least 2^{bits} based on computation requirements
 • If n is not known (automatically computed), you can use $n = 65,536$
 • A convenient plaintext modulus for most cases: $p = 65,537$

• For all other encoding types, an arbitrary plaintext modulus can be used as long as it does not overflow in the case of exact integer arithmetic

• Overflow is not an issue for modular integer arithmetic
GUIDELINES FOR SETTING CIPHERTEXT MODULUS

- Ciphertext modulus q is the main functional parameter that is determined by the computation
 - Each arithmetic operation increases the noise, and q should be large enough to accommodate the noise from all arithmetic operations
 - From the noise perspective, multiplication is much costlier than addition
 - In PALISADE, q is automatically computed based on the multiplicative depth and plaintext modulus p
- Multiplicative depth is not necessarily the number of multiplications
 - For example, if we need to compute $a*b*c*d$, we can compute $e=a*b$ and $f=c*d$ using one level, and then compute $e*f$ using the second level. So we use 2 levels (depth of 2) rather 3 if we were to do the multiplication sequentially.
 - This technique is called **binary tree multiplication**, and it should be used to minimize the multiplicative depth wherever possible.
GUIDELINES FOR SETTING CIPHERTEXT DIMENSION

• Ciphertexts are represented as two arrays of size n
• This size n, called ciphertext dimension, should have a certain minimum value to comply with the chosen security level and desired ciphertext modulus
• Main options for security levels in PALISADE (we implemented the recommendations from the HE standard published at HomomorphicEncryption.org):
 • $HEStd_{128_classic}$ – 128-bit security against classical computers
 • $HEStd_{192_classic}$ – 192-bit security against classical computers
 • $HEStd_{256_classic}$ – 256-bit security against classical computers
 • $HEStd_{NotSet}$ – toy settings (for debugging and prototype development)
• The ciphertext dimension n also determines the size of the vector of encrypted integers.
 • It may sometimes be useful to use a larger ring dimension than the minimum one needed for security.
 • In this case, the user can specify the ring dimension explicitly.
Which scheme to choose?

Introduces BFV and BGV, and explains main differences between them
BFV and BGV schemes

• Brakerski/Fan-Vercauteren (BFV) scheme
 • Use the Most Significant Digit (MSD) form to encode messages
 • The ciphertext modulus is constant while the noise increases with every operation
 • Has an expensive homomorphic multiplication operation
 • Two roughly equivalent variants are implemented in PALISADE: BFVrns and BFVrnsB (a mixed multiprecision-RNS variant BFV has been supported since 2017 but it is not recommended anymore as it is much less efficient)
 • BFVrns is slightly faster and has been more exhaustively stress-tested in PALISADE
 • BFVrns was added in December 2017
 • BFVrnsB was added in June 2018

• Brakerski-Gentry-Vaikuntanathan (BGV) scheme
 • Use the Least Significant Digit (LSD) form to encode messages
 • Maintains the same level of noise by reducing the ciphertext modulus after each multiplication
 • Supports much faster homomorphic multiplication
 • Called BGVrns in PALISADE (a mixed multiprecision-RNS variant BGV has been supported since 2017 but it is not recommended anymore as it is much less efficient)
 • BGVrns was recently added in v1.10 (June 2020)
BGV and BFV schemes

• Notes on the current implementation in PALISADE
 • Theoretically speaking, BGV and BFV have roughly the same noise growth
 • But the current BGV implementation in PALISADE does not yet select the most efficient parameters by default
 • Most efficient parameters can be set manually but require FHE expertise
 • Some further improvements to BGV will be added in the next version of PALISADE

• Recommendations
 • For production-like deployments, BFVrns is recommended
 • BGVrns may give better performance for many computations, especially where many homomorphic multiplications are performed
 • This implementation can be used in research projects
Code example

Explains a simple example showing how to do additions, multiplications, and rotations in BFVrns
KEY CONCEPTS/CLASSES

• **CryptoContext**
 • A wrapper that encapsulates the scheme, crypto parameters, encoding parameters, and keys
 • Provides the same API for all HE schemes
• **Ciphertext**
 • Stores the ciphertext polynomials
• **Plaintext**
 • Stores the plaintext data (both raw and encoded)
 • Supports multiple encodings in a polymorphic manner, including **PackedEncoding**, **IntegerEncodering**, **CoefPackedEncoding**.
STEP 1 – SET CRYPTOCONTEXT

// Set the main parameters
int plaintextModulus = 65537;
double sigma = 3.2;
SecurityLevel securityLevel = HEStd_128_classic;
uint32_t depth = 2;

// Instantiate the crypto context
CryptoContext<DCRTPoly> cryptoContext =
 CryptoContextFactory<DCRTPoly>::genCryptoContextBFVrns(
 plaintextModulus, securityLevel, sigma, 0, depth, 0, OPTIMIZED);

// Enable features that you wish to use
cryptoContext->Enable(ENCRYPTION);
cryptoContext->Enable(SHE);
STEP 2 – KEY GENERATION

// Initialize Public Key Containers
LPKeyPair<DCRTPoly> keyPair;

// Generate a public/private key pair
keyPair = cryptoContext->KeyGen();

// Generate the relinearization key
cryptoContext->EvalMultKeyGen(keyPair.secretKey);

// Generate the rotation evaluation keys
cryptoContext->EvalAtIndexKeyGen(keyPair.secretKey, {1, 2, -1, -2});
STEP 3 – ENCRYPTION

// First plaintext vector is encoded
std::vector<int64_t> vectorOfInts1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
Plaintext plaintext1 = cryptoContext->MakePackedPlaintext(vectorOfInts1);

// Second plaintext vector is encoded
std::vector<int64_t> vectorOfInts2 = {3, 2, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12};
Plaintext plaintext2 = cryptoContext->MakePackedPlaintext(vectorOfInts2);

// Third plaintext vector is encoded
std::vector<int64_t> vectorOfInts3 = {1, 2, 5, 2, 5, 6, 7, 8, 9, 10, 11, 12};
Plaintext plaintext3 = cryptoContext->MakePackedPlaintext(vectorOfInts3);

// The encoded vectors are encrypted
auto ciphertext1 = cryptoContext->Encrypt(keyPair.publicKey, plaintext1);
auto ciphertext2 = cryptoContext->Encrypt(keyPair.publicKey, plaintext2);
auto ciphertext3 = cryptoContext->Encrypt(keyPair.publicKey, plaintext3);
STEP 4 – EVALUATION

// Homomorphic additions
auto ciphertextAdd12 = cryptoContext->EvalAdd(ciphertext1, ciphertext2);
auto ciphertextAddResult =
 cryptoContext->EvalAdd(ciphertextAdd12, ciphertext3);

// Homomorphic multiplications
auto ciphertextMul12 = cryptoContext->EvalMult(ciphertext1, ciphertext2);
auto ciphertextMultResult =
 cryptoContext->EvalMult(ciphertextMul12, ciphertext3);

// Homomorphic rotations
auto ciphertextRot1 = cryptoContext->EvalAtIndex(ciphertext1, 1);
auto ciphertextRot2 = cryptoContext->EvalAtIndex(ciphertext1, 2);
auto ciphertextRot3 = cryptoContext->EvalAtIndex(ciphertext1, -1);
auto ciphertextRot4 = cryptoContext->EvalAtIndex(ciphertext1, -2);
STEP 5 – DECRYPTION

// Decrypt the result of additions
Plaintext plaintextAddResult;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextAddResult, &plaintextAddResult);

// Decrypt the result of multiplications
Plaintext plaintextMultResult;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextMultResult, &plaintextMultResult);

// Decrypt the result of rotations
Plaintext plaintextRot1;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot1, &plaintextRot1);
Plaintext plaintextRot2;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot2, &plaintextRot2);
Plaintext plaintextRot3;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot3, &plaintextRot3);
Plaintext plaintextRot4;
cryptoContext->Decrypt(keyPair.secretKey, ciphertextRot4, &plaintextRot4);
More advanced topics

Explains some non-primitive operations available in PALISADE and further encoding-related topics
SELECTED HIGHER-LEVEL OPERATIONS

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EvalSum</td>
<td>ciphertext, (batchSize)</td>
<td>Computes a sum of (batchSize) components in an encrypted vector; if (batchSize < n), the vector of size (batchSize) needs to be replicated (n/batchSize) times</td>
</tr>
<tr>
<td>EvalInnerProduct</td>
<td>2 ciphertexts, (batchSize)</td>
<td>Multiplies two vectors, and then computes EvalSum</td>
</tr>
<tr>
<td>EvalMultMany</td>
<td>(k) ciphertexts</td>
<td>Computes a product of (k) ciphertexts using the binary tree approach (only (\log k) depth is needed)</td>
</tr>
<tr>
<td>EvalMerge</td>
<td>(k) ciphertexts</td>
<td>Merges (k) ciphertexts with encrypted results in first slot into a ciphertext with (k) slots</td>
</tr>
</tbody>
</table>
MULTIPLE WAYS TO DO ADDITION

- Let us say we need to add 128 integers.
 - Assume the ciphertext dimension is 4K.
 - How we pack the data to get the most efficient result?

- Option 1 (Internal Addition)
 - Pack 128 integers into a single ciphertext and run \textit{EvalSum}.
 - This requires \(\log 128 = 7 \) rotations (rotations are roughly 100x more expensive than \textit{EvalAdd}).

- Option 2 (External Addition)
 - Put each integer into a separate ciphertext: 128 ciphertexts in total.
 - Addition requires 128 \textit{EvalAdds} (vs roughly 700 \textit{EvalAdds} in Option 1).
 - Much faster than Option 1 but requires 128x storage.

- Depending on the tradeoff between runtime and storage, we may choose option 1 or 2 or a hybrid of the two approaches.
HOW TO ENCODE NON-INTETERS?

• Any real number can be represented as an integer based on desired fixed precision
• For example, we have a variable in the range [-7,10] and we need to support 2 decimal digits of precision
 • We can encode -7.00 as -700, -6.99 as -699, -6.98 as -698, ..., 9.99 as 999, and 10.00 as 100.
 • We need to choose \(p \) such that any input/intermediate/output values lie between \(-p/2\) and \(p/2\).
 • The result needs to be scaled down to compensate for the initial scaling and any multiplications during the computation.

• Limitations of this approach
 • Only exact computations are supported: to support a larger magnitude of integers (more computations), we need to choose a larger plaintext modulus \(p \).
 • Approximate homomorphic encryption is a much better option for this (next month’s webinar).
SELECTING CIPHERTEXT MODULUS REVISITED

• Typically the ciphertext modulus is determined by the multiplicative depth
 • However there are applications where we have a large number of additions
 • For example, when we represent a scalar multiplication as many additions to use a smaller ciphertext modulus

• In this case, a large number of additions (thousands) can be equivalent to one or more multiplications
 • We can compute an effective depth to account for the extra noise introduced by many additions

• In such scenarios, BFV is the scheme to use (BGV is built around the multiplicative depth)
THANK YOU

ypolyakov@dualitytech.com

https://palisade-crypto.org