HOMOMOPHIC ENCRYPTION FOR PALISADE USERS: TUTORIAL WITH APPLICATIONS

Applications of Homomorphic Encryption over Integers

Dr. David Bruce Cousins, Director Duality Labs
dcousins@dualilitytech.com
AGENDA

• Role of integers in encrypted applications
• Basic Examples from the PALISADE distribution
• Encrypted SubString Search Application
Role of Integers in Encrypted Applications

A quick review
PALISADE Supports Schemes with Three Classes of Encrypted Operations

- Boolean operations with unlimited depth
 - FHEW, TFHE
- Integer operations with limited depth
 - BGV, BFV, and their RNS variants
 - RNS → Residue Number System – breaks rings of large bit-width integers into a parallel set of rings using < 64 bit residues, allowing very efficient computation on 64-bit CPU architectures
- Approximate “floating point” with limited depth
 - CKKS
Which Scheme You Use Will Depend on the Form of Your Data

- Typical applications well suited for integer schemes:
 - Strings of Characters are just integers
 - Private information retrieval using Integer ID fields
 - Private set intersection [privately joining encrypted data sets based on common fields]
- Before CKKS was available many HE applications used a block scaling approach to approximate floating-point arithmetic.
 - Multiply all inputs by a large constant
 - $3.1415 \times 10000 = 31415$
 - Requires numerical analysis of the problem to determine how big the scale factor should be
 - Affects roundoff error, saturation error
 - Need to keep track of increase of scale during multiplies.
 - $a \times 10000 \times b \times 10000 = c \times 100000000$ etc...
- Don’t do this anymore – use CKKS instead!
Limitations on Integer Homomorphic Encrypted Operations

• Some common Integer software operations cannot be done easily with HE
 • Examples are division, comparison
• Often, we need to recast our problem in order to craft a HE solution
 • An example we will see today is determining if two encrypted numbers are equal
• Packed encoding allows us to take advantage of SIMD (Single Instruction Multiple Data) operations that can provide a great efficiency
 • However not all problems map to this structure well
 • SIMD comes with complexity – efficient code can be difficult to understand
Basic Integer Examples

From the PALISADE distribution
C++ Examples of Integer Operations Provided in the PALISADE release

- Sample executables are in public key encryption area `{root}/build/bin/examples/pke`
- C++ source code for these examples are in `{root}/src/pke/examples`
 - `depth-*`: examples of variations on performing chained multiplication for BGVrns, BFVrns and BFVrns-b.
 - `simple-integers`: examples of addition, multiplication and rotation using packed vector encoding for BFVrns [we reviewed this in the first part of this webinar]
 - `simple-integers-bgvfrns`: same for BGVrns
 - `simple-integers-serial*`: how to serialize (save to disk) the components of a crypto-system (various keys and ciphertext) for BGVrns and BFVrns
- Source code for sample benchmarks are in `{root}/benchmark/src/compare-bfvrns-vs*.cpp`
Encrypted SubString Search Application

From the PALISADE integer examples repository
PALISADE Encrypted SubString Search

• GitLab repo: https://gitlab.com/palisade/palisade-integer-examples
 • Build instructions are in README.md, requires you to install PALISADE development edition

• Contains prototype C++ code that shows a BFVrns application:
 • `strsearch_enc_1.cpp`: Perform a plaintext string search (no wildcards) using the Rabin-Karp method modified for homomorphic encrypted computation, and compare with an encrypted version, one character per ciphertext
 • `strsearch_enc_2.cpp`: The same algorithm but searching on a very large text by using packed vectors of character per ciphertext
Plaintext SubString Search

- search for substring \texttt{pat} of length M in string \texttt{txt} of length N

\texttt{Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut \ldots\ exercitation}

\texttt{incididunt ut labore et dolore magna aliqua. Ut \ldots\ exercitation}
Plaintext SubString Search Algorithms

• Brute force substring search for substring \textit{pat} of length \(M\) in string \textit{txt} of length \(N\)
 • For each offset \(i\) into \textit{txt}
 • For each offset \(j\) into \textit{pat}
 • Compare \texttt{pat[j] == txt[j+i]}
 • Return true if all comparisons for this value of \(i\) are true.
 • Lots of repeated comparisons.

• There are more efficient approaches that use a \textbf{rolling hash}
 • The rolling hash of \textit{pat} is computed once.
 • The rolling hash of substring of \textit{txt} at offset \(i=0\), length \(M\) is computed once
 • The hashes are compared for equality (if == then substring matches)
 • For each offset into \textit{txt} the rolling hash is updated by removing one old character and adding one new character.
Plaintext Rolling hash - initialization

- Calculation of initial hash for a given modulus \(p \)
- Note \(d \) is the size of the alphabet (here 256 bits or one \texttt{char})

```c
int ph = 0; // hash value for pattern
int th = 0; // hash value for txt
int h = 1;
```

// The value of \(h \) would be "pow(d, M-1)%p"
for (i = 0; i < M-1; i++) {
 h = (h*d)%p;
}

// Calculate the hash value of pattern and first window of text
for (i = 0; i < M; i++) {
 ph = (d * ph + pat[i]) % p;
 th = (d * th + txt[i]) % p;
}
Plaintext Rolling hash – update (sliding through \texttt{txt})

- Update of \texttt{txt} hash for new offset

```c
// Calculate hash value for next window of text: Remove leading digit, 
// add trailing digit
if (i < N - M) {
    th = (d * (th - txt[i] * h) + txt[i + M]) \text{ mod } p;

    // We might get negative value of t, converting it to positive
    if (th < 0) {
        th = (th + p);
    }
}
```

- We see there is one multiply by \texttt{h} each update, and one multiplication by \texttt{d}
- Since \texttt{d} is a power of 2, we can replace it with a set of repeated additions to save on multiplicative depth
Plaintext Rolling Hash - Converting to Encrypted Form

• This version of the Rabin-Karp rolling hash was selected because it was amenable to integer HE operations:
 • No divisions only +,- and *
 • Math was performed modulo some large prime
 • Limited multiplications (one per character of pat, and one for each update into txt)
 • Multiplication by a power of 2 constant (can be implemented with a binary tree of additions in order to reduce multiplicative depth)
 • Hash comparisons can be done with encrypted subtraction. Zero values correspond to ==
 • We support mod of negative numbers so we’ve found that the test is not necessary.
PALISADE Encrypted Substring Search V1

- We implement our plaintext strings as `vector<char>` vs `std::string` to simplify writing an encrypted version.
- Version 1, encrypt each character separately and perform encrypted computation in PALISADE.
- Both `txt` and `pat` are encrypted into a vector of ciphertexts.
PALISADE Encrypted Rolling hash

- Calculation of initial encrypted hash for a given plaintext modulus p

```c
CT phct = encrypt_repeated_integer(cc, pk, 0, nrep); // hash value for pattern
CT thct = encrypt_repeated_integer(cc, pk, 0, nrep); // hash value for txt

// The value of h would be "pow(d, M-1)%p"
long h = 1;
for (i = 0; i < M-1; i++) {
    h = (h*d)%p;
}
CT hct = encrypt_repeated_integer(cc, pk, h, nrep); // encrypted h

DEBUG("encrypting first hashes");
// Calculate the hash value of pattern and first window of text
for (i = 0; i < M; i++) {
    auto tmp = encMultD(cc, phct);
    phct = cc->EvalAdd(tmp, epat[i]);
    tmp = encMultD(cc, thct);
    thct = cc->EvalAdd(tmp, etxt[i]);
}
```

Two helper functions defined on next slide.
PALISADE Encrypted Rolling hash - Initialize

- Two helper functions are defined:

  ```cpp
  CT encrypt_repeated_integer(CryptoContext<DCRTPoly> &cc, LPPublicKey<DCRTPoly> &pk, int64_t in, size_t n){
  vecInt v_in(0);
  for (auto i = 0; i < n; i++){
    v_in.push_back(in);
  }
  PT pt = cc->MakePackedPlaintext(v_in);
  CT ct = cc->Encrypt(pk, pt);
  return ct;
}
```

 Packs an integer **in** into a packed encrypted vector by duplicating it **n** times.

 Note that while we could have used a single integer encoding, we will use this function to optimize the algorithm in the next version.

  ```cpp
  CT encMultD(CryptoContext<DCRTPoly> &cc, CT in){
  auto tmp(in);
  for (auto i = 0; i < 8; i++ ){
    tmp = cc->EvalAdd(tmp, tmp);
  }
  return(tmp);
}
```

 Multiplies by 256 via binary tree of repeated addition

 Note: typically noise growth due to addition is very small vs multiplication, but here we are adding a ciphertext with *itself multiple times*, so the noise grows faster than adding independent ciphertexts. The growth is not as fast as multiplication of two ciphertexts but use this approach with caution.
PALISADE Encrypted Rolling hash - Update

• Update of encrypted txt hash for new offset

```cpp
vecCT eres(0);
// Slide the pattern over text one by one
DEBUG("sliding");
for (i = 0; i <= N - M; i++) {
    cout<<i<<'r'<<flush;

    // Check the hash values of current window of text and pattern
    // If the hash values match then only check for characters on by one
    // subtract the two hashes, zero is equality
    DEBUG("sub");
    eres.push_back(cc->EvalSub(phct, thct));

    // Calculate hash value for next window of text: Remove leading digit,
    // add trailing digit
    if (i < N - M) {
        DEBUG("rehash");
        //th = (d * (th - txt[i] * h) + txt[i + M]) % p;
        auto tmp = encMultD(cc,
            cc->EvalSub(thct,
                cc->EvalMult(etxt[i], hct))
        );
        thct = cc->EvalAdd(tmp, etxt[i+M]);
    }
```

Comparison result stored in eres
Update rolling hash
Output Processing

- We decrypt the output `encres`. Any zero entries indicate the hashes match.
- Since these are hashes, there is a very small probability of a hash collision, so the result should be considered a “highly likely match.”
- If we were concerned with leaking any information about the encrypted `pat` or `txt`, we could multiply each entry in `encres` by an encrypted random number which then randomizes the non-zero entries.
PALISADE Encrypted SubString Search V2 – SIMD processing

• The major limitation of V1 is that it is not very efficient.
 • We need a ciphertext for each character in \texttt{txt}
 • We need multiplicative depth equal to length of \texttt{txt}
 • Both limit the practical size of \texttt{txt} that can be searched

• Solution: use packed encoding of vectors and SIMD operations

• Strategy: Slice the text into batches, and pack them into Encrypted vectors to enable SIMD searching of each batch in parallel
 • If we pack the ciphertexts right, we can use the same code to do R=ring-size comparisons in parallel. Remember R is O(32k → 64k)
Encrypting **txt**

- We vectorize **txt** in batches, so each vector has every **K**th character.
- We then create a packed plaintext of each vector and encrypt it, resulting in **L** ciphertexts (note **L** is approx. \(\frac{N}{\text{ring-size}} \), but must be adjusted to account for overlap and must be \(> M \) so we can still generate full hashes for comparison).
- Choose \(K \) and \(L \) to provide an overlap in the batches so that there are no gaps in searching for **pat** in the batched **txt**.
Encrypting *txt*

- **Overlap by M-1 characters**

 - Packed plaintext

 - Encrypted output:
 - `110101010100101010010101010010`
 - `110101010100101010010101010010`
 - `110101010100101010010101010010`
Selecting batch size K and # Ciphertexts L

- K is selected based on the ciphertext ringsize R, and the lengths of M and N so that a large size txt can be encrypted
 - Ringsize is determined by the system based on plaintext modulus P, depth, and security
 - Can be read via $\text{cc-} \rightarrow \text{GetRingDimension()}$
- The actual values of K and L can be found with a simple iteration. See the code for details on the computation.
- Note there is overlap in the batches, i.e. characters in txt are encoded with an overlap in order to allow ‘sliding’ the hash over L ciphertexts without skipping any characters in the original txt
- Note K must be less than the specified multiplicative depth to guarantee decryption
Encrypting \textbf{pat}

• We vectorize \textbf{pat} the same way as before, except we use the helper function \texttt{encrypt_repeated_integer()} to repeat each integer R times.
• Now we can use the same code as V1 to compute every hash operation (generation, update, comparison) in parallel over all the batches of the \texttt{txt}
• We vectorize \texttt{pat} the same way as before, except we use \texttt{encrypt_repeated_integer()} to repeat each integer \texttt{ringsize} times.
Decryption

- Decryption: each zero entry in each output ciphertext vector now provides an indication of a match within that batch.
- We compute an offset into each batch and use that to generate the overall offset of the match in `txt`
 - The offset into each batch is `batch_index * (L - M + 1)`
 -- see code for details
PALISADE Timing results (24 processor server)

• You can find the code in the repository. It has hardwired values for `txt` and `pat` but you can modify the code and play around.

• Version 1 and 2 perform both plaintext and encrypted search and compare the results.

• Encrypted v1: Search for “Anna” in text of 32 characters takes **18.3** sec (one occurrence)

• Encrypted v2: Looking for “Anna” in the entire text of “Anna Karenina” (1666846 characters) takes **16.5** sec (825 occurrences)

• Why is v2 faster than v1?
 • The algorithm used determined that the entire text will fit in 29 batches vs the 32 of v1, so there are fewer updates of the hash.
 • For M=4 (“A,n,n,a”) V1 → 32-4 = 28 hash updates vs V2 → 29-4 = 25 hash updates
PALISADE Practical Observations for Building Integer Systems

- Manually setting parameters, i.e. hardcoding correct values for plaintext modulus p for a large depth (> 20) can be tricky.
 - PALISADE can throw exceptions that are not easy to understand
 - For example: during development we tried using $p = 65537$ and depth 32 which caused an exception in deep the math layer (shift overflow)
 - An internal computation during parameter computation overflowed the maximum big integer bit-width specified in the default MATHBACKEND 2.
 - Increasing the maximum bit-width at library build time or using one of the dynamically sized backends (4 or 6) would avoid this.
 - $p = 7864433$ worked well for our example.
- Write your code incrementally, to find values of p, depth and R, you may need some trial and error to find good values.
- Multiplicative depth for BFVrns is always approximate (though generous)
 - You can often get away with a few more multiplies than depth dictates, but at a risk of failing to decrypt.
 - Very large numbers of additions may reduce the overall depth as well.
Questions?
THANK YOU

dcousins@dualtitytech.com