Introducing PALISADE

Kurt Rohloff
krohloff@DualityTech.com
contact@palisade-crypto.org
Welcome to the PALISADE Webinar Series!

• This is the first in a series of webinars.
• Focus on:
 • Lattice Crypto
 • Homomorphic Encryption
 • Implementation
 • Application

• We plan on offering this seminar monthly.
 • Email contact@palisade-crypto.org and we’ll add you to our mailing list.

• Next webinar – August 28th
 • Reach out if you have requests for future webinars

• We’re recording and will post to Youtube.
 • Link and slides on PALISADE website this weekend.
What is PALISADE For?

• PALISADE is an open-source project.
• Provides efficient implementations of:
 • Lattice cryptography building blocks
 • Leading homomorphic encryption (FHE) schemes.
• PALISADE is designed for
 • Usability, providing simpler APIs,
 • Modularity,
 • Cross-platform support
 • Integration of hardware accelerators.
PALISADE Community

• PALISADE is Fiscally Sponsored Project of NumFOCUS
 • NumFOCUS promotes open practices in research, data and scientific computing
 • Aligned objectives to promote innovation via open source software.

• As a project, we take community growth and engagement seriously.
 • PALISADE is available for all

• Governance and Code of Conduct
 • We adopted NumFOCUS best practices for governance and code of conduct
 • We take our code of conduct very seriously!

• NumFOCUS has been a great fit for PALISADE
 • You can submit donations to PALISADE via NumFOCUS
PALISADE Community

• Extensive External Financial Support
 • DARPA
 • PALISADE grew from PROCEED / SafeWare / YFA / CSL / etc...
 • IARPA
 • Support on RAMPARTS & HECTOR
 • Foundations
 • Sloan Foundation, Simons
 • Corporate / Private
 • Duality, LGS Innovations (CACI), etc...
 • University Contributions
 • MIT, WPI, Sabanci
PALISADE Community

• Extensive user community
 • DoD / Defense Industry
 • Financial Services
 • Healthcare
 • Academia / Research
 • Civil Government
Contributors

• Extensive Contributor Community
 • Duality, NJIT, MIT, UCSD, KU Leuven, TwoSix Labs, Raytheon, CACI, etc...

• We’re always welcoming of new community members!
PALISADE Supports Lattice-based encryption

- Lattice schemes form a “new” family of encryption.
 - Built on lattice mathematics.
 - Lattices are integer vectors.
 - They are resistant to quantum computing attacks.

- Not many lattice schemes have been implemented publicly.
 - This is starting to change.
 - PALISADE supports a general lattice crypto “toolbox”

- PALISADE is an investment in implementation to transition “revolutionary” encryption schemes to widespread production use.
 - See RSA, Elliptic Key, etc…
Lattice Capabilities supported in PALISADE

- Public Key Encryption - PKE
- Proxy Re-Encryption - PRE

- Lattice-based Trapdoors
- Lattice-based IBE / CP-ABE / KP-ABE

- Homomorphic Encryption
 - SHE, FHE, etc…
 - HE schemes supported include BGV, CKKS, BFV, FHEW

- We have a few other functionalities in pre-release.
 - Reach out if you have feature requests!
Post-Quantum

- Quantum attacks:
 - Shor showed quantum algorithms for factoring.
 - Grover showed a quadratic speedup relative to search algorithms.

- We’ll have a future webinar on Lattice Crypto Security
Lattice Encryption Intuition?

• Encryption, Decryption, etc… are primarily composed of linear transforms over large integer vectors.

• Plaintext are integer vectors, modulus small p.
• Ciphertext are integer vectors modulus very large q.
FHE?

- Discovery of a possible scheme in 2009
 - Craig Gentry from Stanford/IBM
 - Most important CS breakthrough of 21st century.
 - Very different computation model.

- There have been tremendous theoretical improvements since then.

- PALISADE leverages the “best” in theory with “best” in implementation.
Design Considerations for Adaptability

• There is a tension between crypto-application-specific configurations vs. generic-math-library configurations

• Crypto-specific (These are specific to the crypto library)
 • Scheme selection
 • crypto parameters

• “Systems” interaction configuration (These are relevant across multiple math-intensive libraries)
 • lattice operations - ex: single-CRT vs. double-CRT
 • Parallelism
 • parallelism in math layer, and SIMD vs. multi-core
 • parallelism in lattice layer, and multi-core vs. multi-node
 • parallelism in circuit execution, such as what is scheduled when, especially in multi-core and multi-node operations to minimize runtime or overall memory usage, and what to cache to disk.
PALISADE Open-Source Library

Encoding Layer
Plaintext Representation

Application Layer
Image Processing, ML/AI, etc...

Crypto Layer
Public Key Encryption, Proxy Re-Encryption, Homomorphic Encryption

Lattice Operations Layer
General Cyclotomic Rings, Power-of-2 Cyclotomic Rings, Cyclic Lattices, etc...

Primitive Math Layer
Modular Arithmetic Operations, Number Transforms, Discrete Gaussian Sampling
An Encrypted Computing Ecosystem

- Applications
- Software Engineering
- Usability
- Schemes
- Configuration
 - Support for Standards – HomomorphicEncryption.org
- Computer Engineering / Hardware
Computing on Encrypted Data

- **Messages**: Examples:
 - Lists of real numbers
 - E-mails in ASCII text
 - JPEG images

- **Plaintext**: Strings of mod p integer vectors
 - Examples:
 - [1 0 0 0]
 - [1 3 543 23]

- **Ciphertext**: Strings of mod q integer vectors
 - Examples:
 - [311 231 3256 7697]
 - [1673 3213 67354 323]

- **Encrypt**
- **Decrypt**
- **Secure Computation**

- **Encode**
- **Decode**

- **Message-Plaintext encodings** determined by translation of program into EvalAdd, EvalMult operations.
- **Coding** is an open research topic and drastically impacts effective runtime.

- **Plaintext-Ciphertext encryption/decryption** defined by FHE scheme.

- **EvalAdd and EvalMult operations on ciphertexts**
Hardware Acceleration

- Supports Hardware co-processors (FHE Processing Unit - FHEPU) for fast execution of FHE operations.

- Capability for subroutine calls to GPU / FGPA accelerators to execute FHE primitives
PALISADE Community?

• Website:
 • https://palisade-crypto.org/
 • Everything below is linked from the PALISADE site, along with links to publications.
PALISADE Community?

• Google Group:
 • https://groups.google.com/a/palisade-crypto.org/d/forum/announcements
 • Please subscribe

• Documentation / PALISADE Manual:

• GitLab Repo:
 • Official Release: https://gitlab.com/palisade/palisade-release
 • Development Preview: https://gitlab.com/palisade/palisade-development

• Reach out!
 • contact@palisade-crypto.org
THANK YOU

contact@palisade-crypto.org
krohloff@palisade-crypto.org