

Introducing PALISADE

Kurt Rohloff

krohloff@DualityTech.com

contact@palisade-crypto.org

Welcome to the PALISADE Webinar Series!

- This is the first in a series of webinars.
- Focus on:
 - Lattice Crypto
 - Homomorphic Encryption
 - Implementation
 - Application
- We plan on offering this seminar monthly.
 - Email contact@palisade-crypto.org and we'll add you to our mailing list.
- Next webinar August 28th
 - Reach out if you have requests for future webinars
- We're recording and will post to Youtube.
 - Link and slides on PALISADE website this weekend.


What is PALISADE For?

- PALISADE is an open-source project.
- Provides efficient implementations of:
 - Lattice cryptography building blocks
 - Leading homomorphic encryption (FHE) schemes.
- PALISADE is designed for
 - Usability, providing simpler APIs,
 - Modularity,
 - Cross-platform support
 - Integration of hardware accelerators.

PALISADE Community

- PALISADE is Fiscally Sponsored Project of NumFOCUS
 - NumFOCUS promotes open practices in research, data and scientific computing
 - Aligned objectives to promote innovation via open source software.
 - As a project, we take community growth and engagement seriously.
 - PALISADE is available for all
 - Governance and Code of Conduct
 - We adopted NumFOCUS best practices for governance and code of conduct
 - We take our code of conduct very seriously!
 - NumFOCUS has been a great fit for PALISADE
 - You can submit donations to PALISADE via NumFOCUS

PALISADE Community

- Extensive External Financial Support
 - DARPA
 - PALISADE grew from PROCEED / SafeWare / YFA / CSL / etc...
 - IARPA
 - Support on RAMPARTS & HECTOR
 - Foundations
 - Sloan Foundation, Simons
 - Corporate / Private
 - Duality, LGS Innovations (CACI), etc...
 - University Contributions
 - MIT, WPI, Sabanci

PALISADE Community

- Extensive user community
 - DoD / Defense Industry
 - Financial Services
 - Healthcare
 - Academia / Research
 - Civil Government

Contributors

- Extensive Contributor Community
 - Duality, NJIT, MIT, UCSD, KU Leuven, TwoSix Labs, Raytheon, CACI, etc...

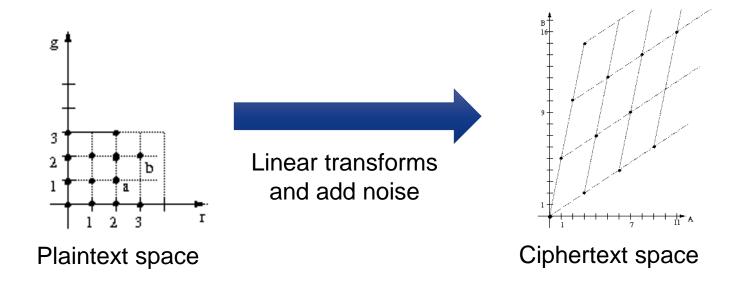
We're always welcoming of new community members!

PALISADE Supports Lattice-based encryption

- Lattice schemes form a "new" family of encryption.
 - Built on lattice mathematics.
 - Lattices are integer vectors.
 - They are resistant to quantum computing attacks.
- Not many lattice schemes have been implemented publicly.
 - This is starting to change.
 - PALISADE supports a general lattice crypto "toolbox"
- PALISADE is an investment in implementation to transition "revolutionary" encryption schemes to widespread production use.
 - See RSA, Elliptic Key, etc...

Lattice Capabilities supported in PALISADE

- Public Key Encryption PKE
- Proxy Re-Encryption PRE
- Lattice-based Trapdoors
- Lattice-based IBE / CP-ABE / KP-ABE
- Homomorphic Encryption
 - SHE, FHE, etc...
 - HE schemes supported include BGV, CKKS, BFV, FHEW
- We have a few other functionalities in pre-release.
 - Reach out if you have feature requests!


Post-Quantum

- Quantum attacks:
 - Shor showed quantum algorithms for factoring.
 - Grover showed a quadratic speedup relative to search algorithms.
- We'll have a future webinar on Lattice Crypto Security

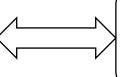
Lattice Encryption Intuition?

• Encryption, Decryption, etc... are primarily composed of linear transforms over large integer vectors.

- Plaintext are integer vectors, modulus small p.
- Ciphertext are integer vectors modulus very large q.

FHE?

- Discovery of a possible scheme in 2009
 - Craig Gentry from Stanford/IBM
 - Most important CS breakthrough of 21st century.
 - Very different computation model.
- There have been tremendous theoretical improvements since then.
- PALISADE leverages the "best" in theory with "best" in implementation.


Design Considerations for Adaptability

- There is a tension between crypto-application-specific configurations vs. generic-math-library configurations
- Crypto-specific (These are specific to the crypto library)
 - Scheme selection
 - crypto parameters
- "Systems" interaction configuration (These are relevant across multiple math-intensive libraries)
 - lattice operations ex: single-CRT vs. double-CRT
 - Parallelism
 - parallelism in math layer, and SIMD vs. multi-core
 - parallelism in lattice layer, and multi-core vs. multi-node
 - parallelism in circuit execution, such as what is scheduled when, especially in multi-core and multi-node operations to minimize runtime or overall memory usage, and what to cache to disk.

PALISADE Open-Source Library

Encoding Layer
Plaintext Representation

Application Layer Image Processing, ML/AI, etc...

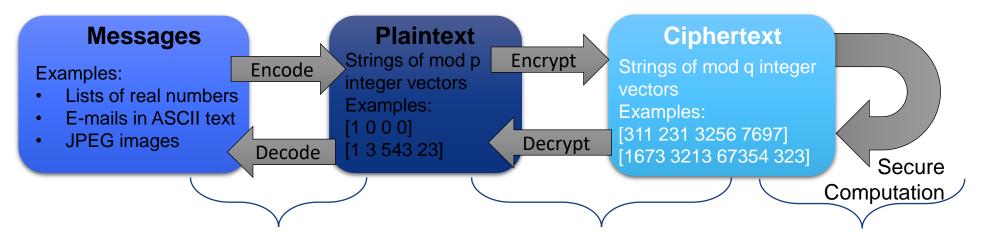
Crypto Layer
Public Key Encryption, Proxy Re-Encryption,
Homomorphic Encryption

Lattice Operations Layer
General Cyclotomic Rings, Power-of-2 Cyclotomic Rings, Cyclic
Lattices, etc...

Primitive Math Layer

Modular Arithmetic Operations, Number Transforms, Discrete

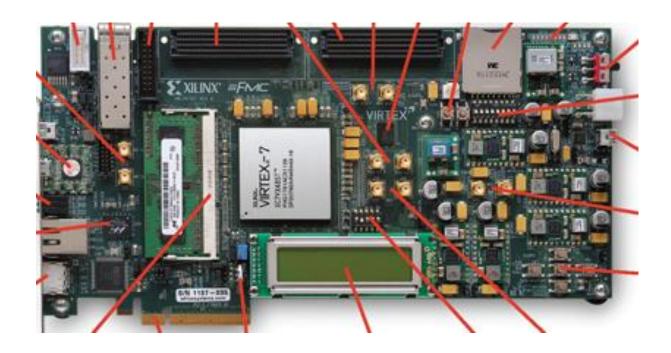
Gaussian Sampling



An Encrypted Computing Ecosystem

- Applications
- Software Engineering
- Usability
- Schemes
- Configuration
 - Support for Standards HomomorphicEncryption.org
- Computer Engineering / Hardware

Computing on Encrypted Data



- Message-Plaintext encodings determined by translation of program into EvalAdd, EvalMult operations.
- Coding is an open research topic and drastically impacts effective runtime.
- Plaintext-Ciphertext encryption/decryption defined by FHE scheme.
- EvalAdd and EvalMult operations on ciphertexts

Hardware Acceleration

- Supports Hardware co-processors (FHE Processing Unit FHEPU) for fast execution of FHE operations.
- Capability for subroutine calls to GPU / FGPA accelerators to execute FHE primitives

PALISADE Community?

- Website:
 - https://palisade-crypto.org/
 - Everything below is linked from the PALISADE site, along with links to publications.

PALISADE Community?

- Google Group:
 - https://groups.google.com/a/palisade-crypto.org/d/forum/announcements
 - Please subscribe
- Documentation / PALISADE Manual:
 - https://gitlab.com/palisade/palisade-release/blob/master/doc/palisade_manual.pdf
- GitLab Repo:
 - Official Release: https://gitlab.com/palisade/palisade-release
 - Development Preview: https://gitlab.com/palisade/palisade-development
- Reach out!
 - contact@palisade-crypto.org

THANK YOU

contact@palisade-crypto.org
krohloff@palisade-crypto.org

